Hybrid atomistic-macroscale modeling of long-time phase change in nanosecond laser–material interaction
نویسندگان
چکیده
In this work, large-scale hybrid atomistic-macroscale simulation is performed to study the long-time material behavior in nanosecond laser–material interaction. Different phase change phenomena are studied, including solid–liquid interface speed, temperature, maximummelting depth, and ablation rate. Full solidification/epitaxial re-growth is observed within 60 ns for the laser fluence of 5 J/m. Strong fluctuation is observed at the solid–liquid interface and surface of the molten pool. No visible superheating is observed at the solid–liquid interface. For the laser fluences studied in this work, an almost linear relationship is observed between the ablation yield and the laser fluence, indicating weak phase
منابع مشابه
Evaluation of Crater Width in Nanosecond Laser Ablation of Ti in Liquids and the Effect of Light Absorption by Ablated Nano-Particles
Micro size craters were created by interaction of nanosecond laser beam with titanium target in liquid media. The dimension of crater i.e. depth and width is important in some applications such as micromachining. When the interaction occurs in liquid environment, the ablated materials from the target expand into the liquid. The ablated material can affect the interaction process if the ablated ...
متن کاملDetermining and Optimizing Effective Factors in Laser Irradiation on Skin Tensional Strength using a Hybrid DOE and DEA Approach
Introduction: We investigated the characteristic of a suitable irradiation on skin's tensional strength using design of experiments (DOE). The experiments in this research are designed in two phases and data envelopment analysis (DEA) is used for performance measurement of each phase. Material and Methods: Samples were provided from pleura as surface tissue made of collagen and elastin fibers. ...
متن کاملNon-Equilibrium Phase Change in Metal Induced by Nanosecond Pulsed Laser Irradiation
Materials processing using high power pulsed lasers involves complex phenomena including rapid heating, superheating of the laser-melted material, rapid nucleation, and phase explosion. With a heating rate on the order of 10 K/s or higher, the surface layer melted by laser irradiation can reach a temperature higher than the normal boiling point. On the other hand, the vapor pressure does not bu...
متن کاملNanosecond Laser Surface Patterning of Bio Grade 316L Stainless Steel for Controlling its Wettability Characteristics
In this work, potential of the nanosecond laser processing technique on manipulating the surface wettability of 316L bio grade stainless steel is investigated. Results show that the steel wettability toward water, improves significantly after the laser treatment. Different analyses are assessed in correlation with wettability using Scanning Electron Microscope (SEM), Scanning Tunneling Microsco...
متن کاملPii: S0921-5093(00)00996-5
This work investigates phase change phenomena due to high power pulsed laser irradiation. During high power laser heating, the intense radiation flux from the laser is transformed to the target material and raises the temperature of the target surface rapidly. When the laser fluence is high enough, melting and superheating of liquid are possible. At even higher laser fluences, the superheated l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008